Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
OMICS ; 22(12): 759-769, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30571610

RESUMO

The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic profiling of human anterior pituitary gland (adenohypophysis) using high-resolution Fourier transform mass spectrometry. A total of 2164 proteins were identified in this study, of which 105 proteins were identified for the first time compared with high-throughput proteomic-based studies from human pituitary glands. In addition, we identified 480 proteins with secretory potential and 187 N-terminally acetylated proteins. These are the first region-specific data that could serve as a vital resource for further investigations on the physiological role of the human anterior pituitary glands and the proteins secreted by them. We anticipate that the identification of previously unknown proteins in the present study will accelerate biomedical research to decipher their role in functioning of the human anterior pituitary gland and associated human diseases.


Assuntos
Adeno-Hipófise/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Cromatografia Líquida , Humanos , Espectrometria de Massas
2.
Sci Rep ; 8(1): 11784, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082709

RESUMO

Japanese Encephalitis Virus (JEV), a globally important pathogen, belongs to the family Flaviviridae, is transmitted between vertebrate hosts by mosquitoes, principally by Culex tritaeniorhynchus. The E-glycoprotein of the virus mediates its attachment to the host cell receptors. In this study, we cloned and purified JEV E-glycoprotein in pET28a vector using E. coli BL21 (DE3) cells. A pull down assay was performed using plasma membrane fraction of BALB/c mouse brain and E-glycoprotein as a bait protein. 2-Dimensional Gel Electrophoresis based separation of the interacting proteins was analyzed by mass spectrometry. Among all the identified partners of E-glycoprotein, PLVAP (Plasmalemma vesicle associated protein) and GKN3 (Gastrokine3) showed significant up-regulation in both JEV infected mouse brain and neuro2a cells. In-silico studies also predicted significant interaction of these receptors with E-glycoprotein. Additionally, overexperssion and silencing of these receptors resulted in increase and reduction in viral load respectively, suggesting them as two critical cellular receptors governing JEV entry and propagation in neurons. In support, we observed significant expression of PLVAP but not GKN3 in post-mortem autopsied human brain tissue. Our results establish two novel receptor proteins in neurons in case of JEV infection, thus providing potential targets for antiviral research.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Encefalite Japonesa/metabolismo , Encefalite Japonesa/virologia , Feminino , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/metabolismo , Proteínas do Envelope Viral/metabolismo
3.
Cell Death Dis ; 8(1): e2556, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102850

RESUMO

Japanese encephalitis virus (JEV), which is a causative agent of sporadic encephalitis, harbours itself inside the neural stem/progenitor cells. It is a well-known fact that JEV infects neural stem/progenitor cells and decreases their proliferation capacity. With mass spectrometry-based quantitative proteomic study, it is possible to reveal the impact of virus on the stem cells at protein level. Our aim was to perceive the stem cell proteomic response upon viral challenge. We performed a two-dimensional gel electrophoresis-based proteomic study of the human neural stem cells (hNS1 cell line) post JEV infection and found that 13 proteins were differentially expressed. The altered proteome profile of hNS1 cell line revealed sustained endoplasmic reticulum stress, which deteriorated normal cellular activities leading to cell apoptosis. The proteomic changes found in hNS1 cell line were validated in vivo in the subventricular zone of JE infected BALB/c mice. Congruent alterations were also witnessed in multipotent neural precursor cells isolated from human foetus and in autopsy samples of human brain clinically diagnosed as cases of JE patients. Endoplasmic reticulum resident chaperone GRP78, mitochondrial protein Prohibitin and heterogeneous nuclear ribonucleoprotein hnRNPC (C1/C2) have been shown to interact with viral RNA. Hence it is proposed that these are the principle candidates governing endoplasmic reticulum stress-induced apoptosis in JEV infection.


Assuntos
Encefalite Japonesa/genética , Proteínas de Choque Térmico/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Proteínas Repressoras/genética , Animais , Apoptose/genética , Proliferação de Células/genética , Eletroforese em Gel Bidimensional , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/virologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico/biossíntese , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/biossíntese , Humanos , Camundongos , Proibitinas , Proteoma/genética , RNA Viral/genética , Proteínas Repressoras/biossíntese
4.
Sci Rep ; 6: 32593, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581498

RESUMO

Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1's role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/crescimento & desenvolvimento , Redes Reguladoras de Genes , Neurônios/metabolismo , Proteína Desglicase DJ-1/genética , Receptores de LDL/genética , Vesiculovirus/crescimento & desenvolvimento , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular Tumoral , Biologia Computacional/métodos , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Feminino , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/virologia , Mitofagia , Neurônios/patologia , Neurônios/virologia , Estresse Oxidativo , Proteína Desglicase DJ-1/metabolismo , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Receptores de LDL/metabolismo , Transdução de Sinais , Vesiculovirus/genética , Vesiculovirus/patogenicidade , Replicação Viral/genética
5.
J Neuroinflammation ; 13: 27, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26838598

RESUMO

BACKGROUND: IL-1ß, also known as "the master regulator of inflammation", is a potent pro-inflammatory cytokine secreted by activated microglia in response to pathogenic invasions or neurodegeneration. It initiates a vicious cycle of inflammation and orchestrates various molecular mechanisms involved in neuroinflammation. The role of IL-1ß has been extensively studied in neurodegenerative disorders; however, molecular mechanisms underlying inflammation induced by IL-1ß are still poorly understood. The objective of our study is the comprehensive identification of molecular circuitry involved in IL-1ß-induced inflammation in microglia through protein profiling. METHODS: To achieve our aim, we performed the proteomic analysis of N9 microglial cells with and without IL-1ß treatment at different time points. Expression of HSP60 in response to IL-1ß administration was checked by quantitative real-time PCR, immunoblotting, and immunofluorescence. Interaction of HSP60 with TLR4 was determined by co-immunoprecipitation. Inhibition of TLR4 was done using TLR4 inhibitor to reveal its effect on IL-1ß-induced inflammation. Further, effect of HSP60 knockdown and overexpression were assessed on the inflammation in microglia. Specific MAPK inhibitors were used to reveal the downstream MAPK exclusively involved in HSP60-induced inflammation in microglia. RESULTS: Total 21 proteins were found to be differentially expressed in response to IL-1ß treatment in N9 microglial cells. In silico analysis of these proteins revealed unfolded protein response as one of the most significant molecular functions, and HSP60 turned out to be a key hub molecule. IL-1ß induced the expression as well as secretion of HSP60 in extracellular milieu during inflammation of N9 cells. Secreted HSP60 binds to TLR4 and inhibition of TLR4 suppressed IL-1ß-induced inflammation to a significant extent. Our knockdown and overexpression studies demonstrated that HSP60 increases the phosphorylation of ERK, JNK, and p38 MAPKs in N9 cells during inflammation. Specific inhibition of p38 by inhibitors suppressed HSP60-induced inflammation, thus pointed towards the major role of p38 MAPK rather than ERK1/2 and JNK in HSP60-induced inflammation. Furthermore, silencing of upstream modulator of p38, i.e., MEK3/6 also reduced HSP60-induced inflammation. CONCLUSIONS: IL-1ß induces expression of HSP60 in N9 microglial cells that further augments inflammation via TLR4-p38 MAPK axis.


Assuntos
Chaperonina 60/metabolismo , Inflamação , Interleucina-1beta/toxicidade , Microglia/patologia , Proteínas Mitocondriais/metabolismo , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Bases de Dados Bibliográficas/estatística & dados numéricos , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microglia/efeitos dos fármacos , Proteômica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
6.
F1000Res ; 4: 334, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26309732

RESUMO

Japanese encephalitis (JE) is the leading cause of viral encephalitis in Asia. Acute encephalitis syndrome (AES) is a group of central nervous system (CNS) disorders caused by a wide range of viruses, bacteria, fungi, chemicals and toxins. It is important to distinguish between various forms of infectious encephalitis with similar clinical manifestations in order to ensure specific and accurate diagnosis and development of subsequent therapeutic strategies. Cerebrospinal fluid (CSF) is in direct contact with the CNS and hence it is considered to be an excellent source for identifying biomarkers for various neurological disorders. With the recent advancement in proteomic methodologies, the field of biomarker research has received a remarkable boost.  The present study identifies potential biomarkers for JE using a proteomics based approach. The CSF proteomes from ten patients each with JE and Non-JE acute encephalitis were analyzed by 2D gel electrophoresis followed by mass spectrometry. Vitamin D-binding protein (DBP), fibrinogen gamma chain, fibrinogen beta chain, complement C4-B, complement C3 and cytoplasmic actin were found to be significantly elevated in case of JE indicating severe disruption of the blood brain barrier and DBP can be suggested to be an important diagnostic marker.

7.
PLoS One ; 9(3): e90211, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24599148

RESUMO

In this study we have reported the in vivo proteomic changes during Japanese Encephalitis Virus (JEV) infection in combination with in vitro studies which will help in the comprehensive characterization of the modifications in the host metabolism in response to JEV infection. We performed a 2-DE based quantitative proteomic study of JEV-infected mouse brain as well as mouse neuroblastoma (Neuro2a) cells to analyze the host response to this lethal virus. 56 host proteins were found to be differentially expressed post JEV infection (defined as exhibiting ≥ 1.5-fold change in protein abundance upon JEV infection). Bioinformatics analyses were used to generate JEV-regulated host response networks which reported that the identified proteins were found to be associated with various cellular processes ranging from intracellular protein transport, cellular metabolism and ER stress associated unfolded protein response. JEV was found to invade the host protein folding machinery to sustain its survival and replication inside the host thereby generating a vigorous unfolded protein response, subsequently triggering a number of pathways responsible for the JEV associated pathologies. The results were also validated using a human cell line to correlate them to the human response to JEV. The present investigation is the first report on JEV-host interactome in in vivo model and will be of potential interest for future antiviral research in this field.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/metabolismo , Neurônios/metabolismo , Proteoma/metabolismo , Animais , Linhagem Celular Tumoral , Encefalite Japonesa/virologia , Interações Hospedeiro-Patógeno , Humanos , Redes e Vias Metabólicas , Camundongos Endogâmicos BALB C , Neurônios/virologia , Transdução de Sinais
8.
Pathog Dis ; 70(1): 75-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23913725

RESUMO

Brucellosis is a worldwide zoonotic disease. No Brucella vaccine is available for use in humans, and existing animal vaccines have limitations. To search the putative vaccine candidates, we studied the exoproteome of Brucella abortus NCTC 10093 using 2-DE-MS approach. Twenty-six proteins were identified using MALDI-TOF/TOF tandem mass spectrometry. Outer membrane protein 25, d-galactose periplasmic-binding protein, oligopeptide ABC transporter protein and isopropylmalate synthase were found to be the most abundant proteins. Most proteins (6, 23%) were predicted to be involved in amino acid transport and metabolism followed by carbohydrate transport and metabolism (4, 15%). Outer membrane protein 25, Omp2b porin and one hypothetical protein were predicted as outer membrane proteins. In addition, Omp28, Omp31 and one ribosomal protein (L9) were also identified. The ribosomal protein L9 was produced as a recombinant protein and was studied in mouse model for vaccine potential. It was found to be immunogenic in terms of generating serum antibody response and release of IFN-γ from mice spleen cells. Recombinant L9-immunized mice were protected against challenge with virulent B. abortus strain 544, suggesting usefulness of ribosomal protein L9 as a good vaccine candidate against brucellosis.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Brucella abortus/imunologia , Brucella abortus/metabolismo , Proteoma/imunologia , Proteoma/metabolismo , Animais , Anticorpos Antibacterianos/imunologia , Vacina contra Brucelose/imunologia , Brucelose/imunologia , Brucelose/metabolismo , Brucelose/prevenção & controle , Feminino , Interferon gama/imunologia , Interferon gama/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/imunologia , Proteínas Ribossômicas/metabolismo , Baço/imunologia , Baço/metabolismo
9.
Curr Microbiol ; 62(3): 999-1008, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21086128

RESUMO

Understanding the pathogenesis of infectious diseases requires comprehensive knowledge of the proteins expressed by the pathogen during in vivo growth in the host. Proteomics provides the tools for such analyses but the protocols required to purify sufficient quantities of the pathogen from the host organism are currently lacking. In this study, we have separated Clostridium perfringens, a highly virulent bacterium and potential BTW agent, from the peritoneal fluid of infected mice using Percoll density gradient centrifugation. The bacterium could be isolated in quantities sufficient to carry out meaningful proteomic comparisons with in vitro grown bacteria. Furthermore, the isolates were found to be virtually free from contaminating host proteins. Microscopy revealed major morphological changes under host conditions at different stages of infection. Profile of immunogenic proteins from in vivo- and TPYG-grown whole cell lysate using mouse anti-gangrene serum indicated over-expression of several proteins especially in the low molecular weight region. Expression of two virulence determinants, ornithine carbamoyl transferase (cOTC), and cystathionine beta-lyase (CBL), under in vivo conditions has also been studied. Two-dimensional gel analysis revealed a host induced proteome which was apparently different in comparison to in vitro grown cells. Detailed proteomic elucidation of differentially expressed proteins shown here is likely to provide valuable insight towards understanding the complexity of the adaptive response of C. perfringens to the host environment.


Assuntos
Clostridium perfringens/isolamento & purificação , Clostridium perfringens/patogenicidade , Modelos Animais de Doenças , Gangrena Gasosa/patologia , Animais , Proteínas de Bactérias/análise , Centrifugação com Gradiente de Concentração/métodos , Clostridium perfringens/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteoma/análise
10.
Infect Genet Evol ; 11(1): 64-77, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20965279

RESUMO

Soil and sewage act as a reservoir of animal pathogens and their dissemination to animals profoundly affects the safety of our food supply. Moreover, acquisition and further spread of antibiotic resistance determinants among pathogenic bacterial populations is the most relevant problem for the treatment of infectious diseases. Bacterial strains from soil and sewage are a potential reservoir for antimicrobial resistance genes. Accurate species determination for anaerobes from environmental samples has become increasingly important with the re-emergence of anaerobic bacteremia and prevalence of multiple-drug-resistant microorganisms. Soil samples were collected from various locations of planar India and the diversity of anaerobic bacteria was determined by 16S rRNA gene sequencing. Viable counts of anaerobic bacteria on anaerobic agar and SPS agar ranged from 1.0 × 10(2)cfu/g to 8.8 × 10(7)cfu/g and nil to 3.9 × 10(6)cfu/g, respectively. Among clostrdia, Clostridium bifermentans (35.9%) was the most dominant species followed by Clostridium perfringens (25.8%). Sequencing and phylogenetic analysis of C. perfringens beta2 toxin gene (cpb2) fragment indicated specific phylogenetic affiliation with cluster Ia for 5 out of 6 strains. Antibiotic susceptibility for 30 antibiotics was tested for 74 isolates, revealing resistance for as high as 16-25 antibiotics for 35% of the strains tested. Understanding the diversity of the anaerobic bacteria from soil and sewage with respect to animal health and spread of zoonotic pathogen infections is crucial for improvements in animal and human health.


Assuntos
Antibacterianos/farmacologia , Bactérias Anaeróbias/efeitos dos fármacos , Esgotos/microbiologia , Microbiologia do Solo , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , Contagem de Colônia Microbiana , Elementos de DNA Transponíveis , Resistência Microbiana a Medicamentos , Genes Bacterianos , Índia , Testes de Sensibilidade Microbiana , Filogenia , RNA Ribossômico 16S/genética
11.
Infect Immun ; 78(9): 3957-68, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20605988

RESUMO

Clostridium perfringens is a medically important clostridial pathogen and an etiological agent causing several diseases in humans and animals. C. perfringens and its toxins have been listed as potential biological and toxin warfare (BTW) agents; thus, efforts to develop strategies for detection and protection are warranted. Forty-eight extracellular proteins of C. perfringens type A and type C strains have been identified here using a 2-dimensional gel electrophoresis-mass spectrometry (2-DE-MS) technique. The SagA protein, the DnaK-type molecular chaperone hsp70, endo-beta-N-acetylglucosaminidase, and hypothetical protein CPF_0656 were among the most abundant proteins secreted by C. perfringens ATCC 13124. The antigenic component of the exoproteome of this strain has also been identified. Most of the extracellular proteins were predicted to be involved in carbohydrate transport and metabolism (16%) or cell envelope biogenesis or to be outer surface protein constituents (13%). More than 50% of the proteins were predictably secreted by either classical or nonclassical pathways. LipoP and TMHMM indicated that nine proteins were extracytoplasmic but cell associated. Immunization with recombinant ornithine carbamoyltransferase (cOTC) clearly resulted in protection against a direct challenge with C. perfringens organisms. A significant rise in IgG titers in response to recombinant cOTC was observed in mice, and IgG2a titers predominated over IgG1 titers (IgG2a/IgG1 ratio, 2). The proliferation of spleen lymphocytes in cOTC-immunized animals suggested a cellular immune response. There were significant increases in the levels of gamma interferon (IFN-gamma) and interleukin 2 (IL-2), suggesting a Th1 type immune response.


Assuntos
Proteínas de Bactérias/análise , Clostridium perfringens/química , Proteômica/métodos , Animais , Proteínas de Bactérias/imunologia , Clostridium perfringens/classificação , Clostridium perfringens/patogenicidade , Eletroforese em Gel Bidimensional , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Ornitina Carbamoiltransferase/imunologia , Virulência
12.
BMC Microbiol ; 9: 162, 2009 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-19664283

RESUMO

BACKGROUND: Clostridium perfringens is a medically important clostridial pathogen causing diseases in man and animals. To invade, multiply and colonize tissues of the host, a pathogen must be able to evade host immune system, and obtain nutrients essential for growth. The factors involved in these complex processes are largely unknown and of crucial importance to understanding microbial pathogenesis. Many of the virulence determinants and putative vaccine candidates for bacterial pathogens are known to be surface localized. RESULTS: Using 2-DE mass spectrometry strategy, we identified major surface (22) and cell envelope (10) proteins from Clostridium perfringens ATCC13124 and those differentially expressed (11) in cells grown on cooked meat medium (CMM) in comparison with cells grown in reference state (tryptose-yeast extract-glucose medium). Riboflavin biosynthesis protein, ornithine carbamoyltransferase, cystathionine beta-lyase, and threonine dehydratase were the predominant proteins that exhibited 2.19 to 8.5 fold increase in the expression level in cells growing on CMM. CONCLUSION: Ornithine carbamoyltransferase and cystathionine beta-lyase were over-expressed in cells grown on cooked meat medium and also identified in the surface protein fraction and the former was immunogenic; making them potential vaccine candidates. Based upon bioinformatic analysis; choloylglycine hydrolase family protein, cell wall-associated serine proteinase, and rhomboid family protein were predicted as surface protein markers for specific detection of C. perfringens from the environment and food. Most of the proteins over-expressed in CMM were shown to have putative function in metabolism, of which seven were involved in amino acid transport and metabolism or lipid metabolism.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Clostridium perfringens/metabolismo , Proteoma/metabolismo , Animais , Biologia Computacional , Meios de Cultura , Feminino , Liases/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Ornitina Carbamoiltransferase/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...